Quantum Mechanics II. Additional problems

Problem 1 : Decay of the A° baryon

The A° baryon is a particle of spin 1/2 and charge 0. This particle can decay into a proton p*
and a 7~ meson, a particle with spin 0 and charge —e. Suppose that the A is initially at rest.
Conservation of energy and momentum fixes the energies of the decay products p™ and 7, leaving
undetermined only the direction of the decay.

To describe the final state, we can thus call 6 the angle between the momentum P+ of the proton
and the z axis, and ¢ the corresponding azimuthal angle. The final state is entirely described by the
two angles 6, ¢ (see Fig. [1)).

FIGURE 1 —

1. Suppose that the initial A? particle has spin +1/2 along the +z axis and that after the decay
the proton travels along the +z direction (that is, the decay angle is # = 0). Show that the
proton must have spin +1/2. In other words, if we prepare A” particles in the +1/2 state, and
we place a detector equipped with a spin polarizer at large distance in the § = 0 direction,
we will always observe protons with S = +1/2. Similarly, show that if the initial A has spin
S = —1/2 and the proton travels in the 4z direction then the proton spin must be §* = —1/2.

2. Call Ay = (pt, 7 ;0 = O,SZ+ = +1/2|U|A°, %0 =+1/2) and A_ = (p*, 7170 = O,S;Jr =

—1/2|U|A°, S%, = —1/2) the probability amplitudes that a A® baryon with spin £1/2 in the 2
direction decays into a proton and a 7~ meson with spin £1/2, when the decay happens along
the z axis. Here U is an unitary matrix and represents the time evolution e ¥/ for a large
time (sufficiently large so that the initial A” state has decayed into the final products).
Calculate the total probability of decay in a direction 6, ¢ (summing over the two possible
orientations of the proton spin), both in the case in which the AY particles has initially spin
S% = +1/2 and when it has initially spin S* = —1/2.
Hint. To study a decay happening in the (0, ¢) direction use the rotation matrices for spin 1,/2
in order to analyze the spin of the initial A? particle in a basis in which the spin quantization
axis is directed in the same direction of the decay direction. The decay amplitudes remain the
same under a global rotation : if the initial spin, the final spin, and the momentum are all
rotated simultaneously the amplitude of decay does not change. (For any rotation matrix, we
must have R-IUR = RTUR =U).

3. Assume that the initial state and the decay process conserve parity. The final distribution and
the decay probability, then, must be symmetric under parity. Using the result of part 2. show
that the only possibility is that |Ay| =|A_].



4. What is the probability distribution of decays if the initial state of the A? particle is a maximally
mixed state, described by the density matrix p = (| Y1 |+ | 1) [)/27

Problem 2 : Total number of states with a given total angular momentum

Consider four particles of spin 1/2. Consider four particles of spin 1/2. How many states are
possible in total ? What are the possible values of the quantum number J associated to the total
angular momentum J = s + s9 + s3 + s4 7 How many states there are for each of the possible values

of J7
Problem 3 : Fine structure in an alkali atom

The lowest energy states of an alkali atom can be analyzed in a first approximation by considering
a single-particle Hamiltonian
2
Hy=2—+V(r), (1)

2m
which describes the motion of the outer electron. Here V(r) = V(|r|) is an effective potential ge-
nerated by the nucleus and by the inner electrons. Eq. however is based on a non-relativistic
description of the electron. The first relativistic corrections (in powers of v/c, where v is the velocity
of the electron), introduce a “spin-orbit” interaction, coupling the coordinates to the spin of the
electron. The spin-orbit interaction is described by a new term in the Hamiltonianlﬂ
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At zero order, when the effects of Hy, are neglected, the spin and the orbital angular momentum s,
L are both conserved quantities : [Hy,s] = 0, [Hp, L] = 0. Therefore, ¢, M, and s, are good quantum
numbers and the degeneracies are 2 x (2¢ + 1). In the hydrogen atom, when V' (r) o 1/r there are
additional degeneracies between states with different ¢ but the same n. This is no longer true for
an arbitrary potential. The eigenstates of Hy in general can be written in the basis |n, ¢, m, s*). The
energies are Hg|n, ¢, m, s*) = Ey(n,l)|n,{,m,s*) and the degeneracy of the levels is 2 x (2¢ + 1).

1. What is the symmetry group of the Hamiltonian Hy and what is that of H = Hy + Hg,. Do s
and L commute with the full Hamiltonian H ? Does the total angular momentum J = s+ L
commute with H 7 Discuss the relation between the symmetries and the conservation laws.
Do you expect that the degeneracies of the levels of Hy will be lifted after turning on the
perturbation Hg, ? What degeneracy do you expect in the levels of H + Hy, ?

2. Write the Heisenberg equation of motion for the spin s.

3. * Derive an expression for the corrections due to Hy, in first order perturbation theory. Show
that the splitting between the two “fine-structure” levels is AE = h?j/(2m?c?)A,,, where j is
the total angular momentum quantum number and A, , = (n,¢,m, s*|(1/r)0V/0r|n, £, m, s*)
for any value of m, s* (this constant does not depend on m and s*).

Hints. The problem can be solved by combining first-order degenerate perturbation theory with
group theory. Degenerate perturbation theory implies that the spectrum is determined by Ey(n, f)+

1. In addition to the spin-orbit coupling there are other relativistic corrections at the same order in v/c. These are
neglected here.



€a, Where €, are the eigenvalues of the (4¢ + 2) x (4¢ + 2) matrix (n, ¢, m’, s"*|Ho|n, €, m, s*). This
matrix can be diagonalized, without any explicit computation, using eigenstates of J2 and J*. This
leads to a problem of addition of angular momenta : in this case J is the sum of the orbital momentum
L and the spin momentum 8. To calculate the numerical value of the energy corrections it is useful
to note that any quantum state which is an eigenstate of I:z, §2, and J? with eigenvalues respectively
((+1), s(s+1), and j(j + 1), is also an eigenstate of the operator (§-L) = (J2 — L2 — §2)/2 with
eigenvalue (j(j +1) —0({+1) —s(s+1))/2.

Solution.

1. The non-perturbed Hamiltonian Hj is invariant under rotations of the electron coordinates

and under independent rotations of the spin s. More precisely, the system has a symmetry
group SO(3)xSU(2)x Za, since the Hamiltonian has also invariance under the parity trans-
formation (r - —r, p - —p, s — S)El. As a result, the energy eigenstates can be labe-
led as |n,¢,m,s,), where ¢ is the angular momentum, m = L,, s, is the z component of
the spin, and n is an additional quantum number. The energy eigenvalues are Fy(n,?) :
Hy|n,t,m,S,) = Ey(n,l)|n,{,m,S,). Note that, in contrast with the hydrogen atom, the
energy Fy depends in general on both n and £. In the hydrogen atom the fact that the energy
depends only on 7 is due to the special form of the potential V (r) oc 1/r. In general, however,
Ey(n, ) depends nontrivially on both the n and the ¢ quantum numbers.
Consider now the Hamiltonian H = Hy + Hy,. H does not commute with L and s; however it
does commute with the total angular momentum J = L +s. The total Hamiltonian is invariant
under simultaneous rotations of the coordinates, the momentum, and the spin of the electron.
Since the symmetry of H is lower than that of Hy the degeneracy of the unperturbed levels
will be lifted upon turning the perturbation. We can predict already without any explicit
calculations that the levels will be characterized by the quantum number j corresponding to
the total angular momentum J?2 = j(j + 1), and that the degeneracies will be 25 + 1. The
quantum number j identifies an irreducible representation of the group.

3. Within first-order perturbation theory we need to diagonalize the 2(2¢ + 1) x 2(2¢ + 1) ma-
trix (n, ¢, m’, s’,|Hso|n, €, m, s.). The eigenvectors of the matrix provide linear combinations of
|n, ¢, m,s.) which can be used as zero-order states in perturbation theory (if the degeneracy is
already lifted at first-order in Hg,). However, since we know that J is conserved we can solve
the problem without having to compute any explicit diagonalization. In fact, since J2 and J,
are conserved, j, and j, are good quantum numbers which label the exact eigenstates of the
Hamiltonian. In perturbation theory, this means that the linear combinations of |n,¢,m,s;)
which provide the zero-order approximation to the exact wavefunctions, must also be states
with a well defined value of J2 and ..

The problem then reduces to an addition of angular momenta : we have to sum an angular
momentum ¢ with an angular momentum s = 1/2. The possible values of j are £ + 1/2 and
¢ —1/2. As a result the level n, ¢, which has initially degeneracy 4¢ + 2 in absence of the
perturbation Hg, becomes splitted into two levels, with degeneracies (2j; + 1) = 2¢ and (272 +
1) = 20 + 2, respectively. These in atomic physics are called “fine-structure” level (in the case
of an alkali atom with a single electron in the external shell).

To calculate the energy in an explicit way, note that the eigenstates in leading-order perturba-
tion theory must be, by the discussion above,

/
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2. In addition, one can also note that the system has time-reversal symmetry.



where the probability amplitudes (n, £, m, s*|n, j, j.) are given by the Clebsh-Gordan coefficient
of the decomposition f®1/2 = ({—1/2) @ (£+1/2). The energy of the two fine-structure levels
can be calculated as

Ek . (J) = <TL,€, j7 jz’Hsoln7jajz>

oo 3 L ltev| (4)
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where it was used that s(s + 1) = 3/4 since the electron has spin s = 1/2.

The matrix element which remains to be calculated is of an operator which is scalar under
rotations, and which commutes with both s and L. In other words, it is scalar not only under
simultaneous rotations of the coordinates and the spin, but also under independent rotations
of them. To see the consequences of this, it is simpler to consider the matrix elements,
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in the initial basis. Since the operator does not change the spin the matrix element must be
proportional to dsz¢=. In addition, the matrix element is the same for s* = +1/2 and for
s* = —1/2. We can thus reduce the calculation to a matrix element in the coordinate space

(as for a spinless particle).

Since the operator 1/r(0V/0r) commutes with all generators L of the algebra and |n, ¢, m)
form an irreducible representation of SO(3), the matrix elements (n, ¢, m'|1/r(0V/0r)|n, £, m)
must be proportional to the identity, that is (n, £, m/|1/r(OV/0r)n,{,m) = A, ¢6mm-

So, overall, we have

<n,€, m’, s’ LoV

ror
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This implies that, also in the basis of eigenstates,

1
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is proportional to the identity.
Combining the results we see that the splitting between the two fine-structure levels is
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Remark. Since L does not commute with H , L2 is not an exact conserved quantity. Still, £ remains
a good quantum number in perturbation theory at leading order, since by the general properties of
degenerate perturbation theory the zero-order wavefunctions are superpositions of states within the
same level (which have well defined values of L?).

Problem 4 : Bound state of two identical spin-1/2 particles

Consider a composite particle composed by two identical spin-1/2 particles, bound together
by an attractive potential. Suppose that the composite particle is at rest (the total momentum
P = p; + p2 = 0), and that it has total angular momentum j = 3 (here j = L; + Lg + 81 + s2).



What is the total spin S and the total orbital angular momentum L of the two consituent spin-1/2
particles 7

Solution. Since the particle is at rest, its wavefunction cannot depend on the center-of-mass
coordinate but only on the difference between the coordinates rq, ry of the two particles. The wave-
function of the bound state, thus will have the form :

(ri, 81512, 82) = Y(r1 —ra; sy, s2) , (9)

where s = +1/2, so = +1/2 are the projections of the spins along the z axis (or any other arbitrary
quantization axis). To analyze the angular momentum of the state, we can expand p(r; — ro; s1, $2)
into spherical harmonics as

Y(ry —1;51,82) = O > Vi (0,0) Rne(Jr1 — rafs 51, 52) (10)
=0 —m

where 6 and ¢ are spherical angles of the vector r| — ry in a spherical coordinate system. The total
orbital angular momentum L = Lj 4+ Lo acts on the wavefunction as :

Lip(ry —ro;s1,52) = (L1 + Lo)y(r; — ro; 81, 52)
= (r1 X p1 + 12 X p2)Y(r1 — 12551, 52) (11)
= (r1 X p1 —r2 X p1)Y(r1 —rp) = (r1 —r2) X p1y(ry —ra) .

In the derivation, it was used that, since the wavefunction depends only on ri — ry, p2t)(r; —rg) =
—iVath(r1 —r3) = +iVi9(r1 — r2) = —p1Y(r1 — 12).

It follows that the state Y, (0, ¢)Rne(Jr1 —ra2f; s1, s2) has total angular momentum L, = m and
L2 =10(0+1).

Since the particles have spin 1/2, the total spin can be either S = 0 or S = 1. From the addition
of angular momenta we have then that the total angular momentum j can be equal to ¢ + 1, ¢, or
¢ — 1, where ¢ is the orbital angular momentum. Since we know that j = 3, the possibilities are
(S=00=37=3),=14=2j=3), S=14=3;5=3), (S=1¢=47=3) (or
superpositions of them).

However, we also know that the two particles are identical and since s = 1/2, they have Fermi
statistics. Thus, the wavefunction must be antisymmetric under exchange of the two particles.

The spherical harmonics Yy ,, are symmetric for ¢ even and antisymmetric for £ odd. Since the
singlet spin state (| 11) — | {1))/v/2 is antisymmetric, the combination (S = 0;¢ = 3) is forbidden
for fermions.

The triplet spin states | 1), | 44), (| T4) + | 41))/v/2 are symmetric under exchange, so from the
other combinations, available, only (S = 1; L = 3; J = 3) is allowed. To write down the wavefunctions
explicitly, we need the Clebsh-Gordan coefficients for the J = 3 sector in the decomposition 1 ® 3 =
2@ 3®4 : the coefficients (J =3,J,|S =1,S,; L =3; L, = M).

Problem 5 : Structure of the deuteron

The nucleus of deuterium, called “deuteron” is a bound state of a neutron and a proton. The
neutron has charge 0, spin 1/2, and mass m,,, the proton has charge +e, spin 1/2 and mass m,, ~ m,,.
It is known that the deuteron has total spin J = 1 in the rest frame (the frame where the center
of mass of the deuteron is at rest). (The total spin of the deuteron is J = L + s1 + s3, where s;
and sy are, respectively, the spins of the proton and the neutron, and L is the total orbital angular
momentum).

Questions.



1. Assume that the neutron and the proton interact via an attractive interaction which can be des-

cribed by a central potential V' = V(|r; —ra|), where r; and ra are, respectively, the coordinates
of the proton and the neutron. The Hamiltonian is taken therefore in a first approximation as
Hy = p?/(2my) +p3/(2my,) +V (|r1 —r2|). From the fact that the spin of the deuteron is J = 1,
deduce what are the possible values of the orbital angular momentum which can contribute to
the deuteron wavefunction.
Hint. Write all possible values of L, s, so and of their sum using the summation formulas
for the angular momentum. Note that the total orbital angular momentum L is nonzero even
if the center of mass of the deuteron is at rest, because of the relative motion between the
proton and the neutron. (In the system in which the center of mass is at rest, po = —p1, S0
L =(r;1 —r2) X p1 = 3(r1 —12) X (p1 — P2)).

2. Is the Hamiltonian Hy sufficient to explain why the deuteron is observed always with J =17
If not, what perturbation AH is needed in order to explain why the J = 1 states are selected ?

3. It can be assumed in a first approximation that the deuteron (which is the lowest energy bound

state) is described by a state with £ = 0 and S = 1. Assuming this approximation, analyze
the response of the system to a weak external magnetic field. Show that the system has three
Zeeman levels with energies +uB, 0, and —uB and the magnetic moment is the sum of the
intrinsic moments of the proton and the neutron p = iy + fin.
Hint. If we turn on a small magnetic field B, the Hamiltonian receives an additional term
to first order in B equal to —(u1 - B + po - B + e - B/(4my,)), where p; = 2,81, and
2 = 21,89 are the intrinsic magnetic moments of the proton and the neutron. The last term,
~ eh(L-B)/(4mp) = pn(L - B)/2 arises from the fact that the proton is charged and thus its
orbital motion inside the deuteron couples to the magnetic field. The constant py = eh/(2m,)
is called "nuclear magneton".

4. In reality, a better approximation to the deuteron state consists in a superposition of a dominant
component with £ = 0, S = 1, and a small component with £ = 2, § = 1. For example
the |J* = +41) state can be written as a linear combination «|S = 1;¢ = 0;J = 1,J% =
D+ 8|S =1;4=2;J =1,J° — 1) where [a?| + [} =1 and |S = 1,4 = 0;J = 1,J* = 1),
|S=1;¢=2;J =1,J% — 1) are states with well defined values of S, ¢, J, and J*. Repeat the
calculation of the Zeeman splitting for 8 # 0. Show that the energies are +u, 0, —u but p is
now not equal to the sum g, + fi,.

Solutions.

1. The total angular momentum of the deuteron is J = L + sy + s9. From the summation formula
for the angular momentum, the total spin S = s; + s9, can take two values, S = 0, S = 1.
More precisely, the tensor product %@% of the two spin-1/2 Hilbert spaces breaks into a direct
sum of a space with spin S = 0 and a space (of dimension 3) with spin 1 : % ® % =04 1. The
state corresponding to S = 0, the "singlet", is (| 11) — | }1))/v/2. The three states forming the
"triplet" of states with S = 1 are | 11), (| 1) + | {1))/Vv2, and | |}).

The total momentum is the sum L+ S between the total spin and the orbital part. The sum can
again be analyzed using the summation of angular momentum. The states in which the spins
form a singlet, for which S? = 0, have simply J = ¢ and the angular momentum summation
becomes simply ¢ ® 0 = £. The states in which S = 1, instead, give three possible values of J :
J=0—1,J=/ and J=/¢+1 (unless £ =0, in which case, the only value is J =S5 = 1).
Knowing that the deuteron has J = 1 leaves the following possible values of the spin and the
orbital momentum :

(S=0=1), (S=1,6=0), (S=10=1), (S=1,6=2). (12



2. The Hamiltonian Hy = p3/(2m) + p3/(2m) + V(Jr1 — r2|) commutes with L, s1, and s,. Since
the two constituent particles are dinstinguishable, there is no constrain on the possible values
of S and ¢ arising from the symmetry/antisymmetry of the wavefunction. As a result, if the
Hamiltonian was exactly equal to Hy, we would expect that the bound states are four-time
degenerate, with a well-defined value of ¢, but not necessarily with a well defined value of
S. Thus, explaining the fact that the lowest state has J = 1, requires some perturbation not
present in Hy which lifts the degeneracy. In particular, we need a perturbation which commutes
with the total angular momentum J, but which does not commute with L, s1, and s».

3. If we assume that the state has ¢ = 0, the orbital contribution is identically zero. We thus have
to calculate only the effect of —(p1-B+po-B) = —2(pps1-B+py,s2-B). In perturbation theory
we need to diagonalize the perturbation only within the subspace corresponding to one energy
level of the unperturbed Hamiltonian. In this case, we need to consider the matrix elements of
—2(pps1 - B + pys2 - B) between states with S = 1.

The simplest way to derive the spectrum is to assume that B is in the z direction. In this case,
the stationary levels are | 1), (| 11) + | 11)/v2), and | |]) and the corresponding energies are
(tp + 1n), 0, —(pp + pn)-

4. The Zeeman energy in a state of the type a|S =1, =0;J =1, J* =+1)+[|S=1,{=0;J =

1, J% = +1), to first order in perturbation theory, is given by the eigenvalues of the matrix

v = (@ (S =1,L=0;J =1,J° = M|
Y ANS =1,0=20=1,J" = M)AHp(a|S = 1,0 = 0,0 = 1,J° = M')  (13)
L BIS =1,0=2J0=1,J" = M)

where AHg = —pp,- B — py, - B — %/JNL - B is the perturbation induced by the magnetic field
at first order and M, M’ range over —1, 0, 1. Since the perturbation commutes with L? there
is no mixing of the £ = 0 and the ¢ = 2 components and we can simplify

oy = o (S=1,0=0;J =1,J° = M|[AHg|S = 1,4 =0;J = 1,J° = M)

+18P(S=1,4=20=1,J* = M|AHp|S =1,0=2;J =1,J* = M")) . (14)
The term in the first line gives —|a|?(pp + n)(J - B). Thus if |a| = 1 we recover the result of
part 3., in which the magnetic moment p is equal to the sum p, + p,. However, for 8 # 0 we
also have a contribution from the second term.
To analyze it, a possible way consists in assuming that the field is directed in the z direction.
Since AHpg commutes with J# the three states M = 1, M = 0, M = —1 are decoupled and
the matrix vy p is diagonal. The contribution to the Zeeman splitting is then given by the
diagonal elements

IBP(S=1,0=2;0=1,J°=M|AHB|S =1,0=2;J =1,J° = M)) (15)

The state |S = 1,0 =2;J =1,J* = M)) can be expanded using the Clebsch-Gordan decom-
position. From the tables of the Clebsch-Gordan series of the 1 ®2 =16 2@ 3 we can read the



coeflicients of the expansion,
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From these, we can calculate the averages
STPPTRRNE U S S . I B
1 3 1
187 1) = —— 4+ 2 = 4=
(US|~ 1) =+ D=
3 3 3 3 1
1£Z 1 :2 — _— = — eZ —_ - =
3 3 3
1| -1)=———-2x-=—=

Here, to lighten the notation, the states |S =1,/ =2;J = 1,J% = M) have been abbreviated
as |M). All off-diagonal matrix elements are zero.

We are now almost ready to calculate the Zeeman splitting. We still need to compute the
averages of the two individual spins s7, s5. This can be done using that the states which we are
considering have S = 1. For any matrix element inside this representation, s = s5 = %SZ. For
example note that (1 [s{| 11) = 1/2 = 5(11 [S*| 1), and [((t | — (1 [)/V2si[(| 1) — | 11
N/V2=0=3[((t4 = {1 D/V2IS*[(I 1) — [ 11))/v2. Thus we have

1 1

(MI5M') = (MIs3IM') = = (ML |M') = =3 Mburp

19)
3 3 (
(M7 My = i(M]JZ|M’) = §M5MM/ .
Combining these with Eqgs. gives

P . 1 . 1 3

—B{M|(2pps1 + 2pns3 + Spunt7)|M) = =BM | =5 (p + pin) + 7o | - (20)

To get the final answer we need to sum the contributions from the (¢ = 0,5 = 1) part and
from the (¢ = 2,5 = 1) part. The result is

16° (3
By ==MuB,  p=Ial*(up+ ) + 5 ( S8 —pp =i ] - (21)

The problem could also have been solved using the Wigner-Eckart theorem.



